kantrium.com | E-Norway.ru | HELFI.ru | MySuomi.com

1.5. Построение систем защиты от угроз нарушения доступности

1.5. Построение систем защиты от угроз нарушения доступности

В общем случае обеспечение защиты от угроз нарушения доступности информации реализуется путём создания той или иной избыточности [2]. Структурная схема системы защиты от угроз нарушения доступности приведена на рис. 1.5.1.

 

Дублирование каналов связи может осуществляться как в пределах автоматизированной системы, так и в отношении каналов, связывающих АС с внешней средой (например, путём использования каналов доступа к Internet от нескольких независимых провайдеров).

Дублирование шлюзов и межсетевых экранов позволяет избежать ситуации, когда связность АС нарушается из-за неисправности узла, представляющего собой «узкое место» - единую точку входа для всего трафика. Дублирование может осуществляться, например, следующим образом (рис. 1.5.2).

 

В схеме на рис. 1.5.2. в нормальных условиях функционирования работает межсетевой экран FW 1. Связь FO (failover) обеспечивает непрерывную синхронизацию FW 2 с FW 1, и в случае сбоя FW 1 всё управление берёт на себя FW 2.

 Резервное копирование информации является одним из важнейших механизмов, обеспечивающих её доступность и целостность. Используются следующие методы резервного копирования:

  1. Полное /full/. В этом случае все без исключения файлы, потенциально подвергаемые резервному копированию, переносятся на резервный носитель.
  2. Инкрементальное /incremental/. Резервному копированию подвергаются только файлы, изменённые с момента последнего инкрементального копирования.
  3. Дифференциальное /differential/. Копируются файлы, изменённые с момента полного резервного копирования. Количество копируемых данных в этом случае с каждым разом возрастает.

На практике резервное копирование обычно осуществляется следующим образом: периодически проводится полное резервное копирование, в промежутках -инкрементальное или дифференциальное. Выбор между дифференциальным и инкрементальным резервным копированием осуществляется с учётом требуемых характеристик подсистемы резервного копирования: инкрементальное копирование выполняется быстрее, однако в случае дифференциального копирования легче восстановить оригинал по резервной копии.

Использование RAID-массивов решает задачу оптимального (с точки зрения надёжности и производительности) распределения данных по нескольким дисковым накопителям. Выделяют следующие типы RAID-массивов:

  • Уровень 0.
    В данном случае несколько дисков представляются как один виртуальный диск. Защита от сбоев на данном уровне никак не обеспечивается.
  • Уровень 1.
    Реализуется зеркалирование – идентичные данные хранятся на нескольких (обычно на двух) дисках. Данный вариант обеспечивает надёжную защиту от сбоев носителя, однако является чрезвычайно неэффективным.
  • Уровень 2.
    Биты данных поочерёдно размещаются на различных дисках; имеются выделенные диски, содержащие контрольные суммы. Для контроля ошибок используется код Хэмминга. Всего используется 39 дисков: 32 с данными и 7 с контрольными суммами. На практике данный уровень используется крайне редко. 
  • Уровень 3,4.
  • Байты или блоки данных записываются на различные диски, биты чётности – на выделенный диск.
  • Уровень 5.
    Данные и контрольные суммы распределяются по всем дискам. Достоинство данного подхода состоит в том, что возможно одновременное выполнение нескольких операций чтения или записи, что значительно повышает общую производительность системы.
  • Уровень 7.
    Функционирование   аналогично   массивам   уровня   5,   дополнительно   на аппаратном   уровне   реализовано   представление   массива   в  виде   единого виртуального диска.

Иногда на практике используются и другие уровни RAID, представляющие собой нестандартизованные комбинации выше перечисленных.

 Зеркалирование серверов в целом аналогично зеркалированию дисковых накопителей: идентичные данные в целях защиты от сбоев оборудования записываются на два независимых сервера. Речь в данном случае идёт исключительно о хранении данных.

Дублирование серверов, в свою очередь, позволяет обеспечить полноценную замену сервера в случае его сбоя за счёт передачи управления резервному серверу (рис. 1.5.3).

В случае отказа основного сервера, резервный сервер, постоянно синхронизирующийся с основным с использованием failover-связи, оперативно перехватит управление.

Использование кластеров позволяет наиболее эффективно обеспечить балансировку нагрузки между нескольким серверами. Кластером называется группа независимых серверов, управляемых как единая система. В отличие от механизма дублирования, в данном случае все серверы являются активными и принимают полноценное участие в обслуживании запросов клиентов.

Механизмы избыточной маршрутизации позволяют за счёт использования избыточных маршрутизаторов и дополнительных соединений гарантировать возможность передачи информации за пределы АС в случае недоступности части маршрутов.

Вопросы надёжности оборудования в общем случае решаются с привлечением методов теории надёжности. Стоит отметить, что оценка надёжности аппаратных средств вычислительной техники плохо поддаётся формализации, и выбор требуемых механизмов обеспечения надёжности (а это прежде всего резервирование и дублирование аппаратуры) осуществляется исходя из наихудших сценариев возможного развития событий.

ПечатьE-mail

Яндекс.Метрика